
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 296 (2006) 1046–1052

www.elsevier.com/locate/jsvi
Short Communication

Identification of a crack in a beam based on the finite element
method of a B-spline wavelet on the interval

J.W. Xiang�, X.F. Chen, B. Li, Y.M. He, Z.J. He

School of Mechanical Engineering, Xi0an Jiaotong University, The State Key Laboratory for Manufacturing Systems Engineering,

Xi0an 710049, PR China

Received 15 May 2005; received in revised form 4 December 2005; accepted 16 February 2006

Available online 5 May 2006
Abstract

The model-based forward and inverse problems in the diagnosis of structural crack location and size by using the finite

element method of a B-spline wavelet on the interval (FEM BSWI) were studied. First the crack and uncracked elements of

BSWI were built to solve the forward problem. The first three frequencies influencing functions of normalized crack

location and size are approximated by means of surface-fitting techniques. Then the first three measured natural

frequencies are employed as inputs of the functions. The intersection of the three frequencies contour lines predicted the

normalized crack location and size. Both the numerical and experimental studies verified the validity of the BSWI elements

in solving crack singular problems with high performance.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration-based methods, irrespective of whether the basis is the mode shape or frequency, have so far been
intended for exploitation for the detection of structural cracks [1–6]. Nandwana and Maiti [1] modeled the
crack as a rotational spring and give a semi-analytical solution for beams. Meanwhile, finite element method
(FEM) is employed for identification of a crack in structures due to the fact that FEM is firmly established as a
standard procedure for the solution of crack problems when the crack is represented by a rotational spring (or
other crack model) of stiffness or flexibility. Kisa [2] integrated the FEM and component mode synthesis for a
cracked Timoshenko beam. Lee [3] used the lowest four natural frequencies and cracked FEM model to detect
a structural crack. Lele and Maiti [4], and Patil and Maiti [5], respectively, employed eight-node iso-parametric
elements to make a more efficient calculation for single and multiple cracks identification in beams. Unlike
traditional FEM, Daubechies wavelet-based finite element method (WFEM) was employed for modal analysis
of crack problems with good performance [6]. The desirable advantages of WFEM are multi-resolution
properties and various basis functions for structural analysis. By means of ‘‘two-scale relations’’ of scaling
functions, the scale adopted can be changed freely according to requirements to improve analysis accuracy.
However, due to Daubechies wavelets lacking of the explicit function expression, traditional numerical
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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integrals such as Gaussian integrals cannot provide desirable precision, and one it needs to calculate
connection coefficients [7], which is a complex process.

Because B-spline wavelet on the interval (BSWI) scaling functions have explicit expressions, the element
stiffness and mass matrices can be calculated conveniently. Furthermore, B-spline wavelets have the best
approximation properties among all known wavelets of a given order L [8]. The application of the BSWI basis
to the versatile FEM provides accurate analytical results and a robust multi-level solving process [9,10]. So
BSWI element is used to identify crack location and size in a beam using the first three measured frequencies.

2. Modal analysis based on BSWI element

The free vibration frequency equations for a multi-degree of freedom (mdofs) system are

K� o2M
�� �� ¼ 0 (1)

where K and M are the global stiffness and mass matrices that can be obtained from the standard assembly
procedure of elemental stiffness matrix K

e;j
b and elemental consistent mass matrix M

e;j
b .

The elemental stiffness matrix K
e;j
b can be solved by

K
e;j
b ¼

EI

l3e
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where EI is the bending stiffness, / ¼ fj
m;�mþ1ðxÞf

j
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is the column vector combined by

the BSWI scaling functions for order m at the scale j on the interval [0, 1] (the explicit expression of the functions
can be seen in Refs. [10,11]), le is the elemental length and the transformation matrix Rb [7,11] is given by

Rb ¼ /ðx1Þ;
1
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d/ðx1Þ
dx

;/ðx2Þ . . ./ðxr�1Þ;/ðxrÞ;
1
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, (3)

where r is the elemental nodal number.
The elemental consistent mass matrix M

e;j
b is given by

M
e;j
b ¼ lerA

Z 1

0

RT
b /ð/ÞTRb dx (4)

where r is the density and A is the area of the cross section. To deal with the boundary conditions, the
corresponding dofs are set to zero and eliminated from the equations.

3. Crack identification method using BSWI element

3.1. Forward problem

Because the natural frequencies can be easily and cheaply acquired in practice and the linear rotational
spring model can effectively describe open crack, the present work is based on the open crack in structures and
using the first three natural frequencies to identify crack location and size. The physical and rotational spring
models are shown in Fig. 1.

The continuity conditions at crack position indicate that the left node j and right node j+1 have the same
transverse displacement, namely, uj ¼ ujþ1, while their rotations yj and yjþ1 are connected through the cracked
stiffness submatrix KS.

KS ¼
Kt �Kt

�Kt Kt

" #
, (5)

where Kt [1] is defined by

Kt ¼ bh2E=ð72pa2f ðaÞÞ, (6)



ARTICLE IN PRESS

Fig. 1. Cracked beam and rotational spring model.
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in which

f ðaÞ ¼ 0:6384� 1:035aþ 3:7201a2 � 5:1773a3 þ 7:553a4 � 7:332a5 þ 2:4909a6, (7)

where a ¼ c=h denotes normalized crack size and b ¼ e=L in Fig. 1 denotes normalized crack location.
Hence, we can assemble the cracked stiffness submatrix KS into the global stiffness matrix easily. The global

mass matrix of the cracked structure is equal to the uncracked one. Then, the cracked structural finite element
model of BSWI is constructed. The solution of the eigenvalue problem can then proceed as usual.

For the determination of the natural frequencies o for a given crack location (determine the location of the
cracked stiffness submatrix in global stiffness) and size (determine Kt), the normalized crack location b and
size a are given as inputs. The relationship between the natural frequencies and the crack parameters
(normalized crack location and size) is

oj ¼ F jða;bÞ ðj ¼ 1; 2; 3; . . .Þ. (8)

Because the functions F j ðj ¼ 1; 2; 3; . . .Þ are unknown and the discrete values can be acquired through Eq.
(1), the surface-fitting techniques [12] are needed for three-dimensional plots of Eq. (8).

Example. Taking the simple supported beam for example, beam length L ¼ 0.5m, Young’s modulus
E ¼ 2:1� 1011 Pa, h� b ¼ 0:02 m� 0:012 m, Poisson’s ratio m ¼ 0:3 and r ¼ 7860 kg=m3. We adopt the
scaling functions of BSWI for m ¼ 4 at the scale j ¼ 3 to construct elements. Fig. 2 shows the relationship
between oi ði ¼ 1; 2; 3Þ and all possible crack parameters using surface-fitting techniques (here, b 2 0:05; 0:9½ �,
a 2 0:05; 0:7½ �).

3.2. Inverse problem

The crack identification inverse problem can be described by

ða;bÞ ¼ F�1j ðojÞ ðj ¼ 1; 2; 3; . . .Þ. (9)

The measurements of any two natural frequencies enable us to define the normalized location and size of a
crack if Eq. (8) has been determined. However, when we use the crack identification method of frequency
contour plots [12], two natural frequency contour plots may intersect at more than one point. Therefore a
minimum of three frequencies is required to identify the two unknown parameters of the normalized crack
location and size. Because the first three frequencies can be measured easily and accurately, they are usually
served as inputs to solve the inverse problem in structure damage identification.

If the first three frequencies are known, the frequency contour plots of Eq. (8) can be acquired and plotted
on the same axes. The common intersection of all the three contour lines indicates the normalized crack
location and size. This intersection becomes unique due to the fact that any cracked structural natural
frequency can be represented by a frequency equation (see Eq. (8)) that is dependent on normalized crack
parameters [12].
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Fig. 2. Relationship between frequencies and all possible crack parameters.

Table 1

Comparison of predicted and actual crack parameters

Case Actual Actual Exact natural frequencies (rad/s) Predicted b* Predicted a*

b a o1 o2 o3 (error %) (error %)

1 0.1 0.1 1177.66 4705.604 10573.663 0.1001(0.10) 0.1001(0.10)

2 0.2 0.1 1176.402 4694.446 10562.889 0.1999(0.05) 0.1(0)

3 0.2 0.3 1162.672 4557.815 10281.642 0.1999(0.05) 0.3001(0.03)

4 0.3 0.2 1165.559 4644.925 10587.306 0.3001(0.03) 0.2(0)

5 0.3 0.3 1149.363 4563.174 10568.267 0.3001(0.03) 0.3(0)

6 0.4 0.2 1160.876 4686.538 10544.768 0.4(0) 0.2(0)

7 0.4 0.4 1105.78 4608.053 10369.596 0.4(0) 0.4(0)

8 0.5 0.2 1159.108 4712.566 10436.419 0.501(0.2) 0.2(0)

9 0.5 0.4 1099.58 4712.566 9964.053 0.501(0.2) 0.4(0)

10 0.6 0.6 1003.482 4479.635 10090.524 0.6(0) 0.6(0)

11 0.7 0.4 1124.204 4446.84 10541.653 0.6999(0.014) 0.4001(0.025)

12 0.7 0.6 1042.566 4140.357 10474.076 0.7001(0.014) 0.6001(0.017)

13 0.8 0.6 1100.028 4060.228 9522.737 0.8001(0.038) 0.6001(0.017)
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Continuing to Example in Section 3.1, the inverse problem is solved by using the exact first three frequencies
[1] as inputs. The comparison of predicted and actual crack parameters is shown in Table 1. The predicted
normalized crack location and size have very perfect solving precision. The relative errors are not more than
0.2%. Fig. 3 shows the crack identification results of some cases by using the contour lines.
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Fig. 3. Frequency contour plots of Case 3 and Case 11. 1. 1st frequency; 2. 2nd frequency; 3. 3rd frequency.

1 2 3 4
Cantilever beam Acceleration transducer

Experimental set measuring principle chart(a) (b)

Fig. 4. Experimental set measuring principle chart: (a) experimental set; (b) measuring principle chart. 1. Charge amplifier; 2. PXI signal

conditioner; 3. data acquisition card; 4. computer.
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4. Experimental verification

In order to verify the validity of the structural crack identification methods, the experimental set of a
cantilever beam is built (shown in Fig. 4(a)). The measuring principle chart is shown in Fig. 4(b).

The material of workpiece for the experiment is 45# steel, the cantilever beam length L ¼ 0515m, the cross
section h� b ¼ 0:02 m� 0:012 m; Young’s modulus E ¼ 2:06� 1011 Pa, material density r ¼ 7917 kg=m3,
Poisson’s ratio m ¼ 0:3 and kerfs width is 0.02mm. Crack cases are shown in Table 3. For the simple structure,
single input and single output (SISO) modal analysis by using a hammer as excitation is a usually used
method.

In most cases, however, the three lines do not intersect at one point because of inaccuracies in the modeling
as compared to measured results. For this purpose, the ‘zero-setting’ procedure described by Adams [13] is
used. In this procedure, Young’s modulus of the structure is changed by using the undamaged natural
frequencies of the structure to determine an effective value, and is given by the following iterative approach:

o2
i M� Em

K

E

����
���� ¼ 0, (10)

where Em is the corrected value of Young’s modulus E, which can be acquired through solving Eq. (10) for
each frequency. The measured frequencies of the cracked cantilever beam and the values of corrected Em are
shown in Table 2.

In this section, the first three experimental measured frequencies are employed as inputs of the inverse
problem for crack quantitative identification. Fig. 5 shows the crack identification results in a cantilever beam
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Table 2

Measured frequencies of cracked cantilever beam and the values of corrected Em

Case b a o1 Em o2 Em o3 Em

Uncracked 358.1 1.73346E11 2324.8 1.85999E11 6483.0 1.84450E11

1 0.6 0.2 355.9 2289.0 6350.3

2 0.6 0.4 355.6 2241.5 6216.7

3 0.8 0.2 357.8 2309.4 6301.2

4 0.8 0.4 357.7 2251.1 6180.8

Fig. 5. Frequency contour plots of Cases 1–4. 1. 1st frequency; 2. 2nd. frequency; 3. 3rd frequency.
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using the frequency contour plots. The intersection point A of three lines indicates the normalized crack
location and size. In the experimental studies, when the three lines do not meet exactly, the centroid of the
three pairs of intersections is taken as the normalized crack location and size [1]. Table 3 shows the
comparison of actual crack parameters and the predicted crack parameters. The relative errors of the given
cases are not more than 18%.
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Table 3

Comparision of actual crack locations and predicted results

Case b a b� (error %) a� (error %)

1 0.6 0.2 0.562(6.3) 0.225(12.5)

2 0.6 0.4 0.596(0.7) 0.349(12.8)

3 0.8 0.2 0.693(13.4) 0.235(17.5)

4 0.8 0.4 0.745(6.9) 0.464(16.0)
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5. Conclusions

A methodology based on BSWI element to detect crack location and size is presented. Because of the good
character of BSWI scaling functions, the BSWI element presented in this paper is a useful tool to deal with
high-performance computation in structural crack identification. Numerical and experimental investigations
verify that the proposed method can be utilized to detect crack location as well as crack size with high
performance.
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